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Abstract

The dynamic stability of simply!supported\ isotropic cylindrical panels under combined static and periodic
axial forces are investigated[ An extension of Donnell|s shell theory to a _rst!order shear deformation theory
is used\ and a system of MathieuÐHill equations are obtained via a normal!mode expansion\ and the
parametric resonance response was analyzed using Bolotin|s method[ Results are compared with those
obtained using the classical shell theory[ The e}ects of the thickness!to!radius ratio on the instability regions
are examined in detail[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The static and dynamic analysis of shells have been studied for a long time[ Among the well!
known shells theories are] Donnell|s "0822# theory\ Love|s "0833# theory\ Flugge|s "0851# theory
and Sander|s theory "0848#[ The study of thin cylindrical panels usually involve the use of these
theories with emphasis on the development of solution methods[ The methods of solution are
mostly exact closed!form solutions\ Webster "0857#\ Blevins "0870# and Soldatos and Hadjigeoriou
"0889#\ or series analytical solutions\ Leissa et al[ "0870#\ Koumousis and Armenakas "0873# and
Palazotto and Linnemann "0880#[ To cater for moderately thick shells\ the e}ects of transverse
shear deformation and rotary inertias were _rst considered by Gulati and Essenberg "0856# and
Zukas and Vinson "0860#[ Exact solutions were later presented by Bert and Chen "0867#\ Bert and
Kumar "0871# and Reddy "0873# for the critical buckling and free vibration of moderately thick
laminated plates and shells[ More recent works regarding this subject include those by Muc "0878#\
Moorthy et al[ "0889#\ Carrera "0880#\ Nosier and Reddy "0881# and Reddy "0885#[

Structural components under periodic loads can undergo parametric resonance which may occur
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over a range of forcing frequencies and has become a popular subject of study[ It was _rst examined
by Bolotin "0853#\ Yao "0854# and Vijayaraghavan and Evan!Iwanowski "0856#[ For thin cyl!
indrical shells under periodic axial loads\ the method of solution is almost always to _rst reduce
the equations of motion to a system of MathieuÐHill equations[ The dynamic stability for such a
system of equations can then be analyzed by a number of methods[ For direct parametric reson!
ances\ the simple and well!known method due to Bolotin "0853# reduces the system of MathieuÐ
Hill equations to the standard form of a generalized eigenvalue problem where solutions are easily
computed[ A literature search showed that studies comparing the instability regions generated
using classical shell theory "CST# and _rst!order shear deformation theory "FSDT# are not
available[ Such a study would be interesting and useful as it would shed light on the relative
importance of the inclusion of shear deformation and rotary inertia e}ects when predicting the
widths of the unstable regions[

In the present analysis\ the dynamic stability of isotropic cylindrical panels under combined
static and periodic axial forces is studied using an extension of Donnell|s shell theory to a _rst!
order shear deformation theory[ The results obtained were compared with those obtained using
classical shell theory[ The method of solution is such that a normal!mode expansion of the
equations of motion yield a system of MathieuÐHill equations and the parametric resonance
responses are analyzed based on Bolotin|s method[ The present formulation of the problem is
also made general to accommodate any boundary conditions but for reasons of simplicity\ the
comparison study is only carried out for the case of simply!supported boundary conditions[

1[ Theory and formulation

The cylindrical panel as shown in Fig[ 0 is assumed to be thin and of uniform thickness[ It is of
length L\ radius R\ thickness h\ width b and shallowness angle a[ The x!axis is taken along a
generator\ the circumferential arc length subtends an angle u\ and the z!axis is directed radially
inwards[ The panel is isotropic with elastic modulus E\ Poisson|s ratio n and material mass density
r[ The pulsating extensional axial load is given by

Na"x\ t# � N9¦Ns cos Pt "0#

where P is the frequency of excitation in radians per unit time[
In the present analysis\ the equations of motion with _rst!order shear deformation theory

"FSDT# of a cylindrical panel using Donnell|s theory as presented in Nosier and Reddy "0881# are
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where u\ v and w are the displacement components in the x\ y and z directions "see Fig[ 0# and f0
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Fig[ 0[ Coordinate system of the cylindrical panel[

and f1 are the rotation functions[ A superposed dot indicates di}erentiation with respect to time
t[ For an isotropic cylindrical panel\ the stress resultants are

N0 � A00o0¦A01o1\ N1 � A10o0¦A11o1\

M0 � D00k0¦D01k1\ M1 � D10k0¦D11k1\

N5 � A55o5\ M5 � D55k5\

Q0 � k4A44o4\ Q1 � k3A33o3\ "2#

where k3 and k4 are the shear correction factors and the sti}nesses Ai\j\ Bi\j and Di\j are de_ned as
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and the mass terms and strain and curvature expressions of eqns "1# and "2# are de_ned as
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The equations of motion of the classical shell theory "CST# are obtained from eqn "0# by
neglecting terms involving I0 and I1 and by setting

f0 � −
1w
1x

\ f1 � −
1w
1u

[ "6#

If the panel is simply!supported along all the edges\ there exists a solution for the equations of
motion in the form
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where n represents the number of circumferential waves and m the number of axial half!waves in
the corresponding standing wave pattern[

The non!dimensional pulsating axial load parameter h is given by

h �
N"0−n1#

Eh
[ "8#

Thus eqn "0# can be written as

ha � h9¦hs cos Pt[ "09#

The equations of motion can be solved using an eigenfunction expansion in terms of the normal
modes of the free vibrations of a cylindrical panel under a constant axial load h9 with the oscillating
component hs � 9[ Substitution of eqn "5# into the equations of motion which are a set of _ve
coupled homogeneous equations yields a 4×4 frequency equation when the determinant is equated
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to zero[ Thus\ for each m and n\ there exists _ve roots corresponding to the transverse\ axial\
circumferential modes and two rotational modes[

To solve the equations of motion that include the oscillating component hs\ a solution is sought
in the form shown below where all the modes are superimposed\

umnj � s
4

j�0

s
�

m�0

s
�

n�0

Amnjqmnj"t# cos lx sin mu

vmnj � s
4

j�0

s
�

m�0

s
�

n�0

Bmnjqmnj"t# sin lx cos mu

f0mnj
� s

4

j�0

s
�

m�0

s
�

n�0

Cmnj

R
qmnj"t# cos lx sin mu

f1mnj
� s

4

j�

s
�

m�0

s
�

n�0

Dmnj

R
qqmnj"t# sin lx cos mu

wmnj � s
4

j�0

s
�

m�0

s
�

n�0

Fmnjqmnj"t# sin lx sin mu "00#

where qmnj"t# is a generalized coordinate and

l �
mp

L
\ m �

np

a
[ "01#

Substituting eqn "00# into the equations of motion and simplifying yields
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Making use of the orthogonality condition\ we multiply eqn "02# by g"AÞrsiI0¦"I1:R#CÞrsi#
cos lrx sin msu\ eqn "03# by g"BÞrsiI0¦"I1:R#DÞrsi# sin lrx cos msu\ eqn "04# by "g:R#"AÞrsiI1¦"I2:R#CÞrsi#
cos lrx sin msu\ eqn "05# by "g:R#"BÞrsiI1¦"I2:R#DÞrsi# sin lrx cos msu and eqn "06# by gI0 sin lrx sin msu[
We then add the _ve resulting equations and integrate over the surface of the panel[ This yields
the following set of equations

MIJq�J¦"KIJ− cos PtQIJ#qJ � 9 "19#

where MIJ\ KIJ and QIJ are matrices and q�J and qJ are column vectors consisting of q�mnj and qmnj\
respectively\ and
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where for
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*
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The co!relations between the subscripts\ J\ m\ n and j follow that of I\ r\ s and i\ respectively[ The
matrices MIJ\ KIJ and QIJ are given as
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and k � 0\ 1\ 2\ 3\ [ [ [ \ N[

2[ Stability analysis

Equation "19# is in the form of a second!order di}erential equation with periodic coe.cients of
the MathieuÐHill type[ Using the method presented by Bolotin "0853#\ the regions of unstable
solutions are separated by periodic solutions having period T and 1T with T �"1p:P#[ The solutions
with period 1T are of greater practical importance as the widths of these unstable regions are
usually larger than those associated with solutions having period T[ As a _rst approximation the
periodic solutions with period 1T can be sought in the form

q � f sin
Pt
1

¦g cos
Pt
1

"16#

where f and g are arbitrary vectors[
Substituting eqn "16# into eqn "19# and equating the coe.cients of the sin"Pt:1# and cos"Pt:1#
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Table 0
First four unstable regions for a panel of b:R � 9[4\ L:R � 1 and under tensile loading of h9 � 0:1hcr

Pt[ of origin p Angle subtended U

CST FSDT ) di} CST FSDT ) di}

h:R � 9[92
0st unstable reg "0\0# 9[6549760 9[6594804 9[48095 9[9145840 9[9147335 9[47038
1nd unstable reg "1\0# 0[9611332 0[9553461 9[43154 9[9615064 9[9618877 9[41496
2rd unstable reg "2\0# 0[4965073 0[3877306 9[47446 9[0051743 9[0058397 9[45247
3th unstable reg "3\0# 0[8864727 0[8721261 9[61228 9[0456455 9[0467342 9[58337

h:R � 9[93
0st unstable reg "0\0# 9[8865733 9[8769031 0[97094 9[9152037 9[9154847 0[95670
1nd unstable reg "1\0# 0[2263681 0[2124668 0[94917 9[9666615 9[9674555 0[91980
2rd unstable reg "2\0# 0[7202360 0[7091882 0[05157 9[0166654 9[0181004 0[01209
3th unstable reg "3\0# 1[3000353 1[2658056 0[33998 9[0621553 9[0645589 0[27555

h:R � 9[94
0st unstable reg "0\0# 0[1297908 0[1099683 0[60138 9[9155779 9[9160396 0[58522
1nd unstable reg "1\0# 0[5951610 0[4689588 0[61156 9[9709593 9[9713130 0[57124
2rd unstable reg "2\0# 1[0510951 1[0198356 0[83951 9[0243046 9[0268536 0[77128
3th unstable reg "3\0# 1[7234398 1[6568292 1[39540 9[0732496 9[0775277 1[21594

terms\ a set of linear homogeneous algebraic equations in terms of f and g can be obtained[ The
conditions for non!trivial solutions are given by

det $0
−0

3
P1MIJ¦KIJ−

0
1
QIJ 9

9 −0
3
P1MIJ¦KIJ¦

0
1
QIJ
1%� 9[ "17#

Instead of solving the above nonlinear geometric equations for P\ the above expression can be
rearranged to the standard form of a generalized eigenvalue problem

det $0
KIJ−

0
1
QIJ 9

9 KIJ¦
0
1
QIJ1−P1 0

0
3
MIJ 9

9
0
3
MIJ1%� 9 "18#

where 9 is a 4N1×4N1 null matrix[ The generalized eigenvalues P1 of the above generalized
eigenvalue problem de_ne the boundaries between the stable and unstable regions and can be
computed easily using any commercially available eigenvalue package[

3[ Numerical results and discussion

The dynamic instability regions for the _rst!order parametric resonances of a shell panel under
combined static and periodic axial loads are presented in Tables 0 and 1 and Figs 2 and 3[ The
non!dimensional excitation frequency parameter p is de_ned as
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Table 1
First four unstable regions for a panel of b:R � 9[4\ L:R � 1 and under compressive loading of h9 � 0:1hcr

Pt[ of origin p Angle subtended U

CST FSDT ) di} CST FSDT ) di}

h:R � 9[92
0st unstable reg "0\0# 9[5421507 9[5372377 9[64666 9[9299923 9[9291145 9[63964
1nd unstable reg "1\0# 9[6071219 9[6009837 0[99269 9[0951822 9[0961731 9[82113
2rd unstable reg "2\0# 9[8060877 9[8959839 0[11446 9[0741256 9[0761732 0[09439
3th unstable reg "3\0# 0[0846487 0[0665016 0[43090 9[1417789 9[1452577 0[26590

h:R � 9[93
0st unstable reg "0\0# 9[7743900 9[7628664 0[29696 9[9185915 9[9188721 0[17471
1nd unstable reg "1\0# 9[8604688 9[8438822 0[62573 9[0946330 9[0963708 0[53232
2rd unstable reg "2\0# 0[1912521 0[0659680 1[12378 9[0892972 9[0831085 1[94410
3th unstable reg "3\0# 0[4384061 0[4952740 1[75218 9[1515417 9[1583755 1[59073

h:R � 9[94
0st unstable reg "0\0# 0[0072079 0[9853966 0[88726 9[9182314 9[9188103 0[86170
1nd unstable reg "1\0# 0[1235622 0[1929348 1[51783 9[0934860 9[0961292 1[40636
2rd unstable reg "2\0# 0[4024978 0[3521128 2[32548 9[0893992 9[0854093 2[19895
3th unstable reg "3\0# 0[8308328 0[7484190 3[32142 9[1528778 9[1636733 3[97827

Fig[ 1[ An unstable region in the hs:h9!p plane[
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Fig[ 2[ First four unstable regions for a panel of b:R � 9[4\ L:R � 1 and under tensile loading of h9 � 0:1hcr[ *\ CST\ [ [ [ \
FSDT[ Upper diagram\ h:R � 9[92[ Middle diagram\ h:R � 9[93[ Lower diagram\ h:R � 9[94[

p � RPX
r"0−n1#

E
[ "29#

Each unstable region is bounded by two curves originating from a common point from the p!
axis with hs � 9[ The two curves appear at _rst glance to be straight lines but are in fact two very
slight {outward| curving plots[ For the sake of tabular presentation\ the angle subtended\ U\ is
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Fig[ 3[ First four unstable regions for a panel of b:R � 9[4\ L:R � 1 and under compressive loading of h9 � −0:1hcr[ *\
CST\ [ [ [ \ FSDT[ Upper diagram\ h:R � 9[92[ Middle diagram\ h:R � 9[93[ Lower diagram\ h:R � 9[94[

introduced[ It is calculated based on the arctangent of the right!angled triangle\ abc\ obtained by
halving the whole unstable region as shown in Fig[ 1[ This angle gives a good measure of the size
of the unstable region as calculations done with the smaller similar triangle\ ab?c? "see Fig[ 1#\ are
within 9[91)[

For the results presented here\ n � 9[2\ L:R � 1 and k3 � k4 � 4:5[ Tables 0 and 1 are the tabular
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results of Figs 2 and 3\ respectively[ The values of h9 are chosen to be in terms of hcr which is the
critical buckling load of a simply!supported circular cylindrical shell subjected to static compressive
axial load and is given by

hcr � Ncr 0
0−n1

Eh 1 "20#

where Ncr as given in Timoshenko and Gere "0850# is

Ncr �
Eh1

ð2"0−n1#Ł0:1R
"21#

and if n is taken to be 9[2\ then

ncr � 9[4496
h
R

[ "22#

The results presented are restricted to thin\ shallow panels of thickness ratio h:R ¾ 9[94 and
shallowness ratio b:R ¾ 9[4 due to the limitations of the approximations on the curvature terms
made in Donnell|s theory[ This is to ensure that the errors in the CST results are due to neglect of
transverse shear e}ects rather than Donnell!type approximations on the curvature terms[ The
results presented also exclude those for circumferential wave number n × 3 due to the limitation
of Donnell|s equations to the higher modes in short to moderate length shell panels[ The magnitude
of the axial loading used is h9 � 0:1hcr[

Table 0 and Fig 2 examine the instability regions generated by the two theorems for panels of
di}erent thickness to radius ratios h:R under tensile loadings[ From Table 0 and Fig[ 2\ comparing
the results obtained by CST and FSDT\ it is observed that the points of origins of the unstable
regions are generally lower and the sizes of the unstable regions generally larger when FSDT is
used[ Thus the inclusion of transverse shear and rotary inertia e}ects in the FSDT are of importance
as it generates more conservative results[ It is also observed that for higher thickness ratios\ the
points of origin are higher[ This can be expected as the points of origin which corresponds to twice
the natural frequencies of the panels are expected to increase with increased sti}ness associated
with the increased thickness[ It is also observed that the sizes of the unstable regions increased as
the thickness of the panel was increased[ The percentage di}erences between the CST results and
FSDT results increased as the thickness of the panel was increased\ giving more and more
conservative results[ This is expected as the inclusion of transverse shear and rotary inertias will
have more e}ect on a thicker panel in making it less sti} than on a thinner shell[ It is also interesting
to note that the percentage increase in the sizes of the unstable regions using FSDT corresponds
closely to the percentage decrease in the magnitude of the points of origin when using CST[

Table 1 and Fig[ 3 presents the corresponding results for compressive loadings[ Here again\ the
points of origins of the unstable regions are generally lower and the sizes of the unstable regions
generally larger when FSDT is used[ An interesting observation here is that the discrepancy
between the CST and FSDT results are more pronounced for the cases with compressive loadings
than those with tensile loadings[ When comparing corresponding results for tensile and compressive
loadings\ it is generally observed that the panels under compressive loadings have lower points of
origins and larger sizes of unstable regions[ This observation holds for both CST and FSDT[
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4[ Conclusion

The dynamic stability of simply!supported\ isotropic cylindrical panels under combined static
and periodic axial forces has been investigated using the generalized Donnell|s shell theory[ A
system of MathieuÐHill equations were obtained via a normal!mode expansion and the parametric
resonance response was analyzed using Bolotin|s method[ First order shear deformation "FSDT#
as well as classical shell theory "CST# were used and results were compared[ The inclusion of
transverse shear and rotary inertias in the FSDT generated more conservative results when com!
pared with results from the CST especially for thicker panels[ The sizes of the unstable regions
were observed to increase as the thickness of the panel was increased[
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