PERGAMON International Journal of Solids and Structures 36 (1999) 3483-3496

Dynamic stability of cylindrical panels with transverse shear
effects

T.Y. Ng**, K. Y. Lam®, J. N. Reddy"

* Department of Mechanical and Production Engineering, National University of Singapore, 10 Kent Ridge Crescent,
Singapore 119260
® Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, U.S.A.

Received 10 October 1997; in revised form 18 May 1998

Abstract

The dynamic stability of simply-supported, isotropic cylindrical panels under combined static and periodic
axial forces are investigated. An extension of Donnell’s shell theory to a first-order shear deformation theory
is used, and a system of Mathieu—Hill equations are obtained via a normal-mode expansion, and the
parametric resonance response was analyzed using Bolotin’s method. Results are compared with those
obtained using the classical shell theory. The effects of the thickness-to-radius ratio on the instability regions
are examined in detail. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The static and dynamic analysis of shells have been studied for a long time. Among the well-
known shells theories are: Donnell’s (1933) theory, Love’s (1944) theory, Flugge’s (1962) theory
and Sander’s theory (1959). The study of thin cylindrical panels usually involve the use of these
theories with emphasis on the development of solution methods. The methods of solution are
mostly exact closed-form solutions, Webster (1968), Blevins (1981) and Soldatos and Hadjigeoriou
(1990), or series analytical solutions, Leissa et al. (1981), Koumousis and Armenakas (1984) and
Palazotto and Linnemann (1991). To cater for moderately thick shells, the effects of transverse
shear deformation and rotary inertias were first considered by Gulati and Essenberg (1967) and
Zukas and Vinson (1971). Exact solutions were later presented by Bert and Chen (1978), Bert and
Kumar (1982) and Reddy (1984) for the critical buckling and free vibration of moderately thick
laminated plates and shells. More recent works regarding this subject include those by Muc (1989),
Moorthy et al. (1990), Carrera (1991), Nosier and Reddy (1992) and Reddy (1996).

Structural components under periodic loads can undergo parametric resonance which may occur

* Corresponding author. Fax: 00 65 775 0092; E-mail: ngty@ihpc.nus.edu.sg

0020-7683/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved
PII1: S0020-7683(98)00161-9



3484 T.Y. Ng et al. | International Journal of Solids and Structures 36 (1999) 3483-3496

over a range of forcing frequencies and has become a popular subject of study. It was first examined
by Bolotin (1964), Yao (1965) and Vijayaraghavan and Evan-Iwanowski (1967). For thin cyl-
indrical shells under periodic axial loads, the method of solution is almost always to first reduce
the equations of motion to a system of Mathieu—Hill equations. The dynamic stability for such a
system of equations can then be analyzed by a number of methods. For direct parametric reson-
ances, the simple and well-known method due to Bolotin (1964) reduces the system of Mathieu—
Hill equations to the standard form of a generalized eigenvalue problem where solutions are easily
computed. A literature search showed that studies comparing the instability regions generated
using classical shell theory (CST) and first-order shear deformation theory (FSDT) are not
available. Such a study would be interesting and useful as it would shed light on the relative
importance of the inclusion of shear deformation and rotary inertia effects when predicting the
widths of the unstable regions.

In the present analysis, the dynamic stability of isotropic cylindrical panels under combined
static and periodic axial forces is studied using an extension of Donnell’s shell theory to a first-
order shear deformation theory. The results obtained were compared with those obtained using
classical shell theory. The method of solution is such that a normal-mode expansion of the
equations of motion yield a system of Mathieu—Hill equations and the parametric resonance
responses are analyzed based on Bolotin’s method. The present formulation of the problem is
also made general to accommodate any boundary conditions but for reasons of simplicity, the
comparison study is only carried out for the case of simply-supported boundary conditions.

2. Theory and formulation

The cylindrical panel as shown in Fig. 1 is assumed to be thin and of uniform thickness. It is of
length L, radius R, thickness /4, width b and shallowness angle «. The x-axis is taken along a
generator, the circumferential arc length subtends an angle 6, and the z-axis is directed radially
inwards. The panel is isotropic with elastic modulus E, Poisson’s ratio v and material mass density
p. The pulsating extensional axial load is given by

N,(x,t) = Ny+ N,cos Pt (1)

where P is the frequency of excitation in radians per unit time.
In the present analysis, the equations of motion with first-order shear deformation theory
(FSDT) of a cylindrical panel using Donnell’s theory as presented in Nosier and Reddy (1992) are
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ox TRao " hEthen Gt R = hithes
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where u, v and w are the displacement components in the x, y and z directions (see Fig. 1) and ¢,
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Fig. 1. Coordinate system of the cylindrical panel.

and ¢, are the rotation functions. A superposed dot indicates differentiation with respect to time
t. For an isotropic cylindrical panel, the stress resultants are

Ny =A,6,+ 4,6, Ny, = A58+ A4558,,
M, =Dk, +DrKk,, M, =D, K;+DskK,,

N¢ = Agets, Mg = DK,
Q) = ksAsses, 0) = kyAsuey, 3)
where k, and ks are the shear correction factors and the stiffnesses 4,;, B;; and D,; are defined as
4 Ao = Eh A A = Eh A A e Ao = Eh
= AR =T 12 = 21—"1_‘)2; 44 = Ass = 66_2(1+v)a
D D ERW’ D ER’ D ER’ 4@
= -, = = Vi, P —
TR T oy TR T T T =y T 241+,

and the mass terms and strain and curvature expressions of eqns (2) and (3) are defined as

72

(I|,12,I3) :J p(172722)d2 (5)
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The equations of motion of the classical shell theory (CST) are obtained from eqn (1) by
neglecting terms involving [, and [, and by setting

ow ow
4’1:—5, ¢2=—%- (7

If the panel is simply-supported along all the edges, there exists a solution for the equations of
motion in the form

mnx . nn0
sin——
L o

Upy = A,y €7 COS

. omnx nnd
Uy = By €' SIN——COS ——
L o

mnx . nnd

mn. ot
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by = D,, e gin mnx cos nnl
, = T e
mn R L o
o MTTX nnd
W = F,,, € SIN I sin Y ®)

where n represents the number of circumferential waves and m the number of axial half-waves in
the corresponding standing wave pattern.
The non-dimensional pulsating axial load parameter # is given by

N(1—v?)
T="En ®

Thus eqn (1) can be written as

N, = o +1,cos Pt. (10)

The equations of motion can be solved using an eigenfunction expansion in terms of the normal
modes of the free vibrations of a cylindrical panel under a constant axial load 7, with the oscillating
component #, = 0. Substitution of eqn (6) into the equations of motion which are a set of five
coupled homogeneous equations yields a 5 x 5 frequency equation when the determinant is equated
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to zero. Thus, for each m and n, there exists five roots corresponding to the transverse, axial,
circumferential modes and two rotational modes.

To solve the equations of motion that include the oscillating component #,, a solution is sought
in the form shown below where all the modes are superimposed,

5 0

Upj = Y. Z Y Aoy (£) €08 Ax sin 10

Jj=1lm=1n=1

5 0 0
mnj - Z Z Z Bnm/‘]mn/(t) sin Ax cos ,uH

Jj=1m=1n=1

b1, = Z Z Z Comy Gy (1) COS Ax sin 110

Jj=1m

2 Z Z Z Drw, C]q,,m_,-(t) sin Ax cos uf
i

m=1n=1

W = Z Y Y Fpuion (1) sin Ax sin u (1
Jj=1m=1n=1

where ¢,,,(?) is a generalized coordinate and

pmm W)

Substituting eqn (11) into the equations of motion and simplifying yields

5 0 0

Z Z Z (qmn/ + ('Omn/qmn/)/ (Amnjll + Cmn/) COS ix Sln :ue = 0 (13)
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5 o0 o0 5 _ 12 _ ) .
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where
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R*(1—v?)
_ 18
! Eh (18)
and
_ A, _ B, . _ C, . _ D .
Amn' = — s an' = — s Cmn' = — s Dmn' = — . (19)
! an/ ! anj / F‘mrg/' / Enrg/

Making use of the orthogonality condition, we multiply eqn (13) by y(4,.,+ (I,/R)C,)
cos J,xsin u,0, eqn (14) by y(B,,I, + (I,/R)D,y) sin 2,x cos u,0, eqn (15) by (y/R)(4,.L>+ (I;/R)C,y)
cos A,xsin u,0, eqn (16) by (y/R)(B...l>+ (I3/R)D,,) sin A,x cos u,0 and eqn (17) by yI, sin 4,x sin u,0.
We then add the five resulting equations and integrate over the surface of the panel. This yields
the following set of equations

M,,4,+ (K, — cos P1Q,,)q, = 0 (20)

where M;;, K;; and Q,; are matrices and §, and q, are column vectors consisting of §,,, and g,,,,
respectively, and

r=123,4,....N
s=1,2,3,4,...,N

i=1,2,3,45
m=1,2,3,4,....N
n=1234,,...,N

j=1,2,3,4,5

1=1,2,3,4,... (NxNxY5)

J=1,2,3,4,... (NxNxY) (21)
where for

I=1, r=1 s=1 i=1

I=2, r=1 s=1 i=2
I=3 r=1 s=1 i=3
I=4, r=1 s=1 i=4
I=5 r=1 s=1 i=5
I=6, r=1 s=2 i=1
I=7, r=1 s=2 i=2
I1=8, r=1 s=2 i=3
I1=9, r=1 s=2 i=4
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I=5N—4, r=1 s=N
I=5N-3, r=1 s=N
I=5N-2, r=1 s=N i=3

N

N

1

I=5N—1, r=1 s= i=4
I1=5N, r=1 s= i=5
I=5N+1, r=2 s= i=1
I=5N+2, r=2 s=1 i=2
I=5N+3, r=2 s=1 i=3
I=5N+4, r=2 s= i=4
I=5N+5 r=2 s=1 i=5
I=5N>—4, r=N s=N i=1
I=5N>-3, r=N s=N i=2
I=5N>-2, r=N s=N i=3
I=5N*>—-1, r=N s=N i=4
I=5N?, r=N s=N i[=5. (22)

The co-relations between the subscripts, J, m, n and j follow that of I, r, s and i, respectively. The
matrices M,,, K;, and Q,; are given as

_ L [ I,
M,J:J f{ <A,Il+ C,)( 4,1, +— C,)cos)u,xsmuGCos)»,,,xsmunQ

0 Jo

_ I, _ _ I, _
+7? (B,Il + I§D1> (B,Il + ;D,) sin ,x cos .0 sin 4,,x cos u,,0

+<

_ I; _
—l—( ) B+ — D,)(B,Iﬁ—1;D,)sin)»,.xcosusesin/lmxcos,un@

>U\‘<

1,
> < 1,1, +— C,)( 1,1, +—= C,)cos A,.x sin py0 cos A,,x sin p,,0

+7? sin,x sin u,0 sin 4,,x sin u,,@} d0dx
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L (fa a
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0 Jo
L
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_ 4 (25)
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- I
Ar=y <11Ak 13@)
L
B/?:V<11 k"‘RZDk>
Y - I3
CZXf=R<Iz /(+1;Ck>
Y _ I
Df=4 <12 o+ ;Dk>
Ef =1, (26)

andk=1,2,3,4,..., N.

3. Stability analysis

Equation (20) is in the form of a second-order differential equation with periodic coefficients of
the Mathieu—Hill type. Using the method presented by Bolotin (1964), the regions of unstable
solutions are separated by periodic solutions having period 7and 27 with T' = (2r/P). The solutions
with period 27 are of greater practical importance as the widths of these unstable regions are
usually larger than those associated with solutions having period 7. As a first approximation the
periodic solutions with period 27T can be sought in the form

. Pt Pt
q=fsm7 —i—gcos? 27)

where f and g are arbitrary vectors.
Substituting eqn (27) into eqn (20) and equating the coefficients of the sin(Pt/2) and cos(Pt/2)
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Table 1
First four unstable regions for a panel of 5/R = 0.5, L/R = 2 and under tensile loading of 1, = 1/21,,

Pt. of origin p Angle subtended ®
CST FSDT % diff CST FSDT % diff
h/R = 0.03
1st unstable reg (1,1) 0.7650871 0.7605915 0.59106 0.0256951 0.0258446 0.58149
2nd unstable reg (2,1) 1.0722443 1.0664572 0.54265 0.0726175 0.0729988 0.52507
3rd unstable reg (3,1) 1.5076184 1.4988417 0.58557 0.1162854 0.1169408 0.56358
4th unstable reg (4,1) 1.9975838 1.9832372 0.72339 0.1567566 0.1578453 0.69448
h/R = 0.04
1st unstable reg (1,1) 0.9976844 0.9870142 1.08105 0.0263148 0.0265958 1.06781
2nd unstable reg (2,1) 1.3374792 1.3235779 1.05028 0.0777726 0.0785666 1.02091
3rd unstable reg (3,1) 1.8313471 1.8102993 1.16268 0.1277765 0.1292115 1.12310
4th unstable reg (4,1) 2.4111464 2.3769167 1.44009 0.1732664 0.1756690 1.38666
h/R = 0.05
1st unstable reg (1,1) 1.2308019 1.2100794 1.71249 0.0266880 0.0271407 1.69633
2nd unstable reg (2,1) 1.6062721 1.5790699 1.72267 0.0810604 0.0824241 1.68235
3rd unstable reg (3,1) 2.1621062 2.1209467 1.94062 0.1354157 0.1379647 1.88239
4th unstable reg (4,1) 2.8345409 2.7679303 2.40651 0.1843507 0.1886388 2.32605

terms, a set of linear homogeneous algebraic equations in terms of f and g can be obtained. The
conditions for non-trivial solutions are given by

_%P2MIJ+KIJ_%QIJ 0
det . 1 = 0. (28)
0 —P"M,;+K;,+5Qy

Instead of solving the above nonlinear geometric equations for P, the above expression can be
rearranged to the standard form of a generalized eigenvalue problem

K, — 0 M 0
de{( v—3Qu | )_P2<4 v ﬂ:o 29
0 KIJ"‘QQU 0 ZMIJ

where 0 is a 5N?x 5N? null matrix. The generalized eigenvalues P* of the above generalized
eigenvalue problem define the boundaries between the stable and unstable regions and can be
computed easily using any commercially available eigenvalue package.

4. Numerical results and discussion

The dynamic instability regions for the first-order parametric resonances of a shell panel under
combined static and periodic axial loads are presented in Tables 1 and 2 and Figs 3 and 4. The
non-dimensional excitation frequency parameter p is defined as
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Table 2
First four unstable regions for a panel of 5/R = 0.5, L/R = 2 and under compressive loading of 1, = 1/2#,,

Pt. of origin p Angle subtended ®
CST FSDT % diff CST FSDT % diff
h/R = 0.03
1st unstable reg (1,1) 0.6532618 0.6483488 0.75777 0.0300034 0.0302256 0.74075
2nd unstable reg (2,1) 0.7182320 0.7110948 1.00370 0.1062933 0.1072842 0.93224
3rd unstable reg (3,1) 0.9171988 0.9060940 1.22557 0.1852367 0.1872843 1.10540
4th unstable reg (4,1) 1.1957598 1.1776127 1.54101 0.2528890 0.2563688 1.37601
h/R = 0.04
1st unstable reg (1,1) 0.8854011 0.8739775 1.30707 0.0296026 0.0299832 1.28582
2nd unstable reg (2,1) 0.9715799 0.9549933 1.73684 0.1057441 0.1074819 1.64343
3rd unstable reg (3,1) 1.2023632 1.1760791 2.23489 0.1903083 0.1942196 2.05521
4th unstable reg (4,1) 1.5495172 1.5063851 2.86329 0.2626528 0.2694866 2.60184
h/R = 0.05
1st unstable reg (1,1) 1.1183180 1.0964077 1.99837 0.0293425 0.0299214 1.97281
2nd unstable reg (2,1) 1.2346733 1.2030459 2.62894 0.1045971 0.1072303 2.51747
3rd unstable reg (3,1) 1.5135089 1.4632239 3.43659 0.1904003 0.1965104 3.20906
4th unstable reg (4,1) 1.9419439 1.8595201 4.43253 0.2639889 0.2747844 4.08938

N/N

0.25

> p

Fig. 2. An unstable region in the 7,/1,-p plane.
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Fig. 3. First four unstable regions for a panel of /R = 0.5, L/R = 2 and under tensile loading of n, = 1/2¢.,.—, CST, ...,
FSDT. Upper diagram, #/R = 0.03. Middle diagram, /R = 0.04. Lower diagram, #/R = 0.05.

p(1—v?)
=RP |[———. 30
p z (30)
Each unstable region is bounded by two curves originating from a common point from the p-
axis with #, = 0. The two curves appear at first glance to be straight lines but are in fact two very

slight ‘outward’ curving plots. For the sake of tabular presentation, the angle subtended, ®, is
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Fig. 4. First four unstable regions for a panel of /R = 0.5, L/R = 2 and under compressive loading of o, = —1/25.,. —,
CST,..., FSDT. Upper diagram, #/R = 0.03. Middle diagram, #/R = 0.04. Lower diagram, /R = 0.05.

introduced. It is calculated based on the arctangent of the right-angled triangle, abc, obtained by
halving the whole unstable region as shown in Fig. 2. This angle gives a good measure of the size
of the unstable region as calculations done with the smaller similar triangle, ab’c” (see Fig. 2), are
within 0.02%.

For the results presented here, v = 0.3, L/R = 2 and k, = ks = 5/6. Tables 1 and 2 are the tabular
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results of Figs 3 and 4, respectively. The values of 7, are chosen to be in terms of 7, which is the
critical buckling load of a simply-supported circular cylindrical shell subjected to static compressive
axial load and is given by

_y (=V 31
77cr - cr Eh ( )
where N, as given in Timoshenko and Gere (1961) is
ER?
; (32)

T BO—?)RR
and if v 1s taken to be 0.3, then

h
Ny = 0.5507E. (33)

The results presented are restricted to thin, shallow panels of thickness ratio #/R < 0.05 and
shallowness ratio /R < 0.5 due to the limitations of the approximations on the curvature terms
made in Donnell’s theory. This is to ensure that the errors in the CST results are due to neglect of
transverse shear effects rather than Donnell-type approximations on the curvature terms. The
results presented also exclude those for circumferential wave number n > 4 due to the limitation
of Donnell’s equations to the higher modes in short to moderate length shell panels. The magnitude
of the axial loading used is 1, = 1/27,,.

Table 1 and Fig 3 examine the instability regions generated by the two theorems for panels of
different thickness to radius ratios /R under tensile loadings. From Table 1 and Fig. 3, comparing
the results obtained by CST and FSDT, it is observed that the points of origins of the unstable
regions are generally lower and the sizes of the unstable regions generally larger when FSDT is
used. Thus the inclusion of transverse shear and rotary inertia effects in the FSDT are of importance
as it generates more conservative results. It is also observed that for higher thickness ratios, the
points of origin are higher. This can be expected as the points of origin which corresponds to twice
the natural frequencies of the panels are expected to increase with increased stiffness associated
with the increased thickness. It is also observed that the sizes of the unstable regions increased as
the thickness of the panel was increased. The percentage differences between the CST results and
FSDT results increased as the thickness of the panel was increased, giving more and more
conservative results. This is expected as the inclusion of transverse shear and rotary inertias will
have more effect on a thicker panel in making it less stiff than on a thinner shell. It is also interesting
to note that the percentage increase in the sizes of the unstable regions using FSDT corresponds
closely to the percentage decrease in the magnitude of the points of origin when using CST.

Table 2 and Fig. 4 presents the corresponding results for compressive loadings. Here again, the
points of origins of the unstable regions are generally lower and the sizes of the unstable regions
generally larger when FSDT is used. An interesting observation here is that the discrepancy
between the CST and FSDT results are more pronounced for the cases with compressive loadings
than those with tensile loadings. When comparing corresponding results for tensile and compressive
loadings, it is generally observed that the panels under compressive loadings have lower points of
origins and larger sizes of unstable regions. This observation holds for both CST and FSDT.
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5. Conclusion

The dynamic stability of simply-supported, isotropic cylindrical panels under combined static
and periodic axial forces has been investigated using the generalized Donnell’s shell theory. A
system of Mathieu—Hill equations were obtained via a normal-mode expansion and the parametric
resonance response was analyzed using Bolotin’s method. First order shear deformation (FSDT)
as well as classical shell theory (CST) were used and results were compared. The inclusion of
transverse shear and rotary inertias in the FSDT generated more conservative results when com-
pared with results from the CST especially for thicker panels. The sizes of the unstable regions
were observed to increase as the thickness of the panel was increased.
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